852
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 26 Aug 2023
852 points (94.1% liked)
Technology
60062 readers
1384 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
He's probably hyper self conscious about people ripping into Teslas over their clearances (with inconsistencies measured in millimetres). But, no, instead of saying "VW can produce stuff that doesn't look like it fell from a truck and you will figure it out, too" he's going overboard.
If we're going overboard, why bother with cars at all? Just use this cheesy blueprint, make it work and solve all of humanity's problems! This is what California should invest in instead of trains.
Elon: "Stacking" tolerances? No, we will not tolerate anything less than micron precision on every aspect of the design.
Micron, as in 0.00004"? Yes you COULD hold it, with second ops and temp control.
The total tolerance is .0004". In equally disposed bilateral tolerancing it will be +-.0002".
Eh, if someone tells me to reduce a tolerance from 5 to 10 thou at work, it's understood that it's +/-5 and 10. I don't think I've ever heard someone use the full range of a tolerance in conversation. If the tolerance isn't bilateral, it would be said like plus 5, minus zero. Anyways, +/- .0005" is our standard tolerance on the span of all dowel hole pairs.
Bilateral tolerancing is a Machinist's first introduction to tolerancing so it's no surprise to run that as default. And I suppose GD&T is not heavily used where you are.
If you're given a parallelism tolerance of 10 micron are you assuming that to be +-10 micron? True position? Angularity of 5 thou? Etc... The only feature control that could be interpreted as bilateral by default is profile and it's still communicated by its total tolerance.
Simple +- tolerancing isn't the industry standard anymore. And if Tesla prints are anything like spaceX ones... It's basically all GD&T and minimal title block tolerances.
I use GD&T on all my drawings, including 100% of my hole callouts. However I'm one of the more enthusiastic adopters of ASME Y14.5 at the place I work. Therefore, I get what your saying regarding the tolerance range, but since most of my coworkers are still relying on block tolerances, I'll refer to a .010" positional tolerance as a "+/- .005" equivalent" in conversation so there is no miscommunication. I can see how this is not the norm.
Just curious.. what does Starrett have that Tesla will need?
Starrett isn't known for quality precision metrology.