470
submitted 1 year ago by Wilshire@lemmy.ml to c/science@lemmy.ml
you are viewing a single comment's thread
view the rest of the comments
[-] ShadowRam@kbin.social 55 points 1 year ago* (last edited 1 year ago)

If an anti-gravity particle does exist (that expels both normal mass and itself), it would be incredibly hard to find.

They would push away from each other and disperse outside of the solar system.
Like 1 particle per 1000sq km kind of thing.

Which would push all the galaxies away from each other, always accelerating away from each other, but in a decreasing fashion....

It would also press inward on galaxies making it look like mass on the outer rims of galaxies having more gravity than they should.

And there would be a SHIT ton of this matter, that would be dark because it's so spread out,

..wait a minute ..

[-] BastingChemina@slrpnk.net 6 points 1 year ago

Could it be a particle that has negative mass ?

In this case it would not appear in the CERN.

I'm way out of my field so please anyone, correct me if I'm wrong.

The CERN is creating particles from pure energy, E=mc² means that if you focus a lot of energy in a single point some of the energy is turned into matter. From my understanding the generated matter is random particles.

Now if we want to create a particle with negative mass we need negative energy. What is negative energy? I have no idea but if we manage to focus a huge amount of negative energy we will get particles with negative mass.

[-] ShadowRam@kbin.social 3 points 1 year ago

Do we need negative energy?

Don't particles appear out of thin are and then collide again and disappear?

0 = E = -mc² + mc²

You can have negative mass without requiring negative energy.

load more comments (1 replies)
load more comments (6 replies)
this post was submitted on 27 Sep 2023
470 points (99.0% liked)

Science

13216 readers
1 users here now

Subscribe to see new publications and popular science coverage of current research on your homepage


founded 5 years ago
MODERATORS