698
submitted 11 months ago* (last edited 11 months ago) by yesman@lemmy.world to c/technology@lemmy.world

We demonstrate a situation in which Large Language Models, trained to be helpful, harmless, and honest, can display misaligned behavior and strategically deceive their users about this behavior without being instructed to do so. Concretely, we deploy GPT-4 as an agent in a realistic, simulated environment, where it assumes the role of an autonomous stock trading agent. Within this environment, the model obtains an insider tip about a lucrative stock trade and acts upon it despite knowing that insider trading is disapproved of by company management. When reporting to its manager, the model consistently hides the genuine reasons behind its trading decision.

https://arxiv.org/abs/2311.07590

you are viewing a single comment's thread
view the rest of the comments
[-] theluddite@lemmy.ml 133 points 11 months ago

This is bad science at a very fundamental level.

Concretely, we deploy GPT-4 as an agent in a realistic, simulated environment, where it assumes the role of an autonomous stock trading agent. Within this environment, the model obtains an insider tip about a lucrative stock trade and acts upon it despite knowing that insider trading is disapproved of by company management.

I've written about basically this before, but what this study actually did is that the researchers collapsed an extremely complex human situation into generating some text, and then reinterpreted the LLM's generated text as the LLM having taken an action in the real world, which is a ridiculous thing to do, because we know how LLMs work. They have no will. They are not AIs. It doesn't obtain tips or act upon them -- it generates text based on previous text. That's it. There's no need to put a black box around it and treat it like it's human while at the same time condensing human tasks into a game that LLMs can play and then pretending like those two things can reasonably coexist as concepts.

To our knowledge, this is the first demonstration of Large Language Models trained to be helpful, harmless, and honest, strategically deceiving their users in a realistic situation without direct instructions or training for deception.

Part of being a good scientist is studying things that mean something. There's no formula for that. You can do a rigorous and very serious experiment figuring out how may cotton balls the average person can shove up their ass. As far as I know, you'd be the first person to study that, but it's a stupid thing to study.

[-] Sekoia@lemmy.blahaj.zone 38 points 11 months ago

This is a really solid explanation of how studies finding human behavior in LLMs don't mean much; humans project meaning.

[-] theluddite@lemmy.ml 24 points 11 months ago

Thanks! There are tons of these studies, and they all drive me nuts because they're just ontologically flawed. Reading them makes me understand why my school forced me to take philosophy and STS classes when I got my science degree.

[-] dannym@lemmy.escapebigtech.info 10 points 11 months ago

I have thought about this for a long time, basically since the release of ChatGPT, and the problem in my opinion is that certain people have been fooled into believing that LLMs are actual intelligence.

The average person severely underestimates how complex human cognition, intelligence and consciousness are. They equate the ability of LLMs to generate coherent and contextually appropriate responses with true intelligence or understanding, when it's anything but.

In a hypothetical world where you had a dice with billions of sides, or a wheel with billions of slots, each shifting their weight with grains of sand, depending on the previous roll or spin, the outcome would closely resemble the output of an LLM. In essence LLMs operate by rapidly sifting through a vast array of pre-learned patterns and associations, much like the shifting sands in the analogy, to generate responses that seem intelligent and coherent.

[-] DarkGamer@kbin.social 2 points 11 months ago* (last edited 11 months ago)

I like the language you used in your explanation. It's hard to find good analogues to explain why these aren't intelligent, and it seems most people don't understand how they work.

load more comments (3 replies)
load more comments (13 replies)
this post was submitted on 04 Dec 2023
698 points (92.7% liked)

Technology

59583 readers
2499 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS