239
Light-Speed Spaceships Would Have Trouble Phoning Home
(www.iflscience.com)
This is a most excellent place for technology news and articles.
What exactly is subspace anyways?
It’s a different part of the universe, separate from normal space where things like baryonic matter exists. In subspace certain of our universe’s fundamental rules as seen in normal space don’t apply or constants are different.
How much of this is based on reality and how much is based on Star Trek wanting a mechanism to be able to communicate between star fleet and the Enterprise?
I think entirely Star Trek on this one. Although, if we ever want to move* faster than light, it’ll almost certainly require a science or an understanding of nature which we don’t even have theoretical concepts of in 2023.
We use ions for a bunch of stuff like Li-ion batteries and various other chemical engineering marvels on a daily basis. I wonder how new is the idea of ions anyway?
Wikipedia has this to say: “Svante Arrhenius put forth, in his 1884 dissertation, the explanation of the fact that solid crystalline salts dissociate into paired charged particles when dissolved, for which he would win the 1903 Nobel Prize in Chemistry. Arrhenius' explanation was that in forming a solution, the salt dissociates into Faraday's ions, he proposed that ions formed even in the absence of an electric current.”
We’ve built so much on top an idea that’s only about 139 years old. Before that, it must have been pretty difficult or even impossible to explain large parts of chemistry we use every day.
I wonder how would you imagine the future of chemistry in the early 1800s? Could you imagine that nowadays we leach gold from a mineral that doesn’t even look golden at all? Could you imagine that we can pull aluminium from rocks that don’t even look metallic in any way? Could you imagine that we use it to build all sorts of things like cans, door frames and airplanes? What about surface coating of materials to give them corrosion resistance, different colors or scratch resistance. In the past 139 years we’ve done all sorts of absolutely wild things with ions.
If you start studying chemistry in 2023 you’ll probably hear about ions during the first lecture and later you’ll build all sorts of wonderful things on that bit of information.
Thanks for this. I have similar thoughts as to some people's definitiveness about our understanding of the universe and its speed limit.
The thing is, we don’t know is the speed limit is a hard problem.
Maybe will struggle with it for centuries or maybe we’ll find a way to avoid the problem within the next 130 years. Maybe we’ll find a way to bend space so that you don’t really need to travel very fast. Maybe wormholes become a viable option. Maybe we’ll build hyperspace gates or something like that.
Or maybe none of that is viable and a thousand years later we’re still struggling with the speed of light wishing there was a way around it.
At some point, microbes and immunology were a complete mystery. People dying after surgery was a hard problem and nobody knew how to fix that. Turns it, all you need is ethanol and penicillin, but we couldn’t even imagine it at the time.
Space is like a rainbow, subspace is equal to ultraviolet and hyperspace is infrared. At least inmy head cannon.
Subspace is what the warp bubble moves through
Ok, then it's fictional. The theoretical warp drive that is consistent with Einstein's field equations moves through normal space but just warps it in a way that it effectively moves faster than light (while locally obeying the light speed limit).
Though that still requires something with negative mass or gravity (I was very disappointed when they confirmed antimatter has normal gravity, I was hoping the theory was wrong on that).
There's still dark energy and dark matter that are kinda odd
There is the idea that everything is shrinking instead of space expanding, which resolves the dark energy question.