824
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 06 Apr 2024
824 points (98.5% liked)
science
14595 readers
164 users here now
A community to post scientific articles, news, and civil discussion.
rule #1: be kind
<--- rules currently under construction, see current pinned post.
2024-11-11
founded 1 year ago
MODERATORS
48 seconds at those temperatures is no joke, that is pretty amazing. I didn’t see the article elaborate on what the current limiting factors are for pushing beyond 48 seconds. Like I wonder if it’s a hard wall, a new engineering challenge, a tweak needed, etc. this is the reactor that set the last record so they are doing something really right.
(The article touches on this bit a little) I was watching something about fusion the other day and it seems that it is super tricky to keep the magnetic field balanced in a way that keeps the plasma in a proper toroid. Not only does it need to keep the correct strength, it has to fight against random turbulence. This is critical to start the reaction, but also to maintain it.
Also, they gave some other physical limitations in the article as well:
Basically, it's the container that has limitations as containing a pseudo-sun probably isn't easy.
According to another commenter the heat generated is 7 times that of the core of the sun. Considering we use the sun in sci fi to destroy anything that can't be destroyed by other means, controlling that level of heat seems like a real challenge
Yeah. Actually using that heat is the next challenge, I suppose. If I am not mistaken (and I am often mistaken), they are not actually using the reaction to power the reactor yet.
It's all math, basically. If they measure more energy coming out than they put in, it's considered a win.
How would they use it to power a reactor? Is it like a regular nuclear reactor where you essentially boil water to power a steam turbine?
I swear a part of my inner child died the day I found out that nuclear reactors are essentially big kettles.
It's likely going to create steam, just like a reactor today. It is a very effective way to turn a turbine for a generator, after all. All the bits that actually start and maintain the reaction need fuck tons of electricity, so the reaction can literally power itself when attached to a generator.
While there are a ton of formulas for converting energy from heat, to steam, to mechanical energy and then into electricity, it's all basically the same: more power out than you put in is a good reaction.
Almost forgot, water is dual function. It cools the equipment and it acts as an energy transport. I believe ammonia is more efficient in some circumstances, but water is better for obvious reasons.
Yeah, I mean it makes sense. My inner child wants there to be some sort of magic that splits the atomic nucleus (or in the case of fusion... well you know) and harnesses the energy through some sort of fancy magical-to-us-commonfolk process.
Kettles are great, but not whimsical or fantastic.
How the heat is generated is still wicked-cool and is basically magic. Think about it this way: We are holding a toroid shaped micro-sun in place with magnets. Those magnets need to be adjusted hundreds of times a second to keep everything in its place. Sure, it just boils water, but how it boils water is where the real magic is.
We are building atoms by taking control of the core of a star.
That's fair! I'm not trying to downplay the accomplishment at all. In that way even nuclear fission is really cool.
It was just a big dissilusionment moment for me way back when I learned how the electricity is actually generated.
Last one I read about is just constantly and very quickly (far quicker than human abilities) adjust the magnetic field around the plasma in order to keep it stable and in place. They've been (or at least one team was) using AI to go over data and control and predict the field adjustments, because only reacting after the plasma starts to move hasn't been quick enough.
Yes, that'd be TAE technologies.
The algorithm was called the optometrist, it was paired with a human operator to more quickly converge on the correct settings for stable plasma by having the machine randomly tweak various meta-parameters, while the human would generally decide whether the current settings were "better" or "worse" than the previous pulse.
I wonder if there isn't a stable chamber shape that promotes turbulence in a controlled manner in order to prevent it getting out of hand? A little bit like the dimples on a golf ball create micro pockets of turbulence promoting laminar flow.
Unknown. There were attempts into that general idea, one of them is the polywell, but I don't know too much about it.
They most likely ran out if liquid helium as the world is running out of the stuff at an alarming rate
Fusion uses hydrogen and produces helium
They use liquid helium to cool the super magnets...
Sure, but they don't consume it, and let it just boil off. They have massive refrigerant setups to bring it down to temp and keep it there.
Sure, but why does that mean they must be losing the helium each time? I don't know anything about liquid helium and super conductors, but I know I don't need to replace my radiator fluid just because it cooled my engine.
Once used, it need to be cooled down to -252c to be reused. Not like a closed loop of oil
Alright, did some research, first off you're wrong about this being the reason even if this was a plausible reason. The real reason is the ash and heat divertors failed.
Second, you don't even need liquid helium for super conduction. Here's a few closed loop helium gas coolers that get to 10 kelvin. They need to be refilled on the scale of years, not from a single test.
https://www.arscryo.com/closed-cycle-cryocoolers https://stirlingcryogenics.com/products/closed-loop-helium-gas-cooling-system/
I get you care deeply about helium loss but this is the last thing you should be accidentally spreading misinformation about. This process literally creates more helium then it uses.
I didn't say they did, just said probably, I'm just a stupid redneck.
Oh and how do we capture said multi thousand deg helium?
By cooling down the air that contains it until it's liquid, then distilling that. Actually a standard process though usually you freeze down natural gas not just random air, it's quite helium-rich.
You got that right, at least
This is such a ridiculous comment. I can literally go on Amazon and buy some helium right now. You really think if that's possible, a cutting edge research lab would run out of the stuff?
Sure, it's limited and getting scarcer, but no one's running out yet.
https://www.innovationnewsnetwork.com/helium-shortage-4-0-what-caused-it-and-when-will-it-end/29255/
You're obviously an idiot
https://www.cbc.ca/news/canada/calgary/helium-shortage-prairies-1.7052408
https://www.marketwatch.com/story/investors-see-opportunity-after-decadelong-helium-shortage-what-you-need-to-know-0d1dc0ce
That doesn't mean that they didn't have enough. The world being in the process of losing helium as a whole doesn't mean these researchers "ran out" of it. If they knew they needed it, they would have purchased it, so unless the world has run out of helium already then they didn't run out of it. You act like noone there could calculate exactly how much helium this uses per second and just buy x seconds worth of helium.
OK let me rephrase, they ran out of usable liquid helium. You do realise LH is the coldest known substance known. If you have 5L of usable LH once you use the 5L and turn it into a gas it is no longer -254c A sing use of an MRI uses 2000L at say the low end of cost of $30 so $60,000 and that is at room temps now add a few thousand degrees....
A single use of an MRI doesn't use 2000 liters, that is the upper end of a hospitals ENTIRE supply of helium. On average an MRI users 70 Liters per MONTH of operation. You're literally just spewing bullshit at this point, have a fun time being completely misinformed on things that upset you greatly, I'm going to go play games
You are right. In a sense, they have to reclaim the helium. It takes 2,000L to run it, they reclaim it compress/cool then reuse it. That 70 L/month is what they loose after use.
Do some reading before being an ass
Being an ass started a few replies further up, and it wasnt HornyOnMain.