23
Qwen3-Coder-Next (huggingface.co)

It's out!

top 8 comments
sorted by: hot top controversial new old
[-] cecilkorik@lemmy.ca 1 points 1 day ago

Seems pretty good, using the latest version of ollama (downloaded the default Q4 from ollama) and then popped it into Codex with this config.toml:

model = "qwen3-coder-next:Q4_K_M"
model_provider = "ollama"
model_reasoning_effort = "medium"

[model_providers.ollama]
name = "Ollama"
base_url = "http://localhost:11434/v1"

[analytics]
enabled = false

Works well in Codex CLI and VScode Codex IDE plugin. Did not work well with Kilo Code or Roo plugins unfortunately (but I have yet to find much that does).

I am not an expert, this may not be the best way, I don't know... just sharing my experience for the other non-experts out there.

[-] tpWinthropeIII@lemmy.world 1 points 1 day ago

I had trouble with two Unsloth quants and had to switch to Bartowski's quant.

IMO it's a very good model, not just for coding. It's also very good as a general model. I might even prefer it to instruct.

[-] Xylight@lemdro.id 1 points 3 days ago

thanks to the beauty of mixture-of-experte models i can shove a q2 quant of this into my 8gb vram

[-] avidamoeba@lemmy.ca 5 points 1 week ago

What does this active parameters business about? Is it supposed to perform similar to much bigger models at the same RAM usage?

[-] hendrik@palaver.p3x.de 7 points 1 week ago* (last edited 1 week ago)

As far as I know fewer active parameters means faster. There's less arithmetic calculations to be done per pass. But all parameters need to be kept in memory, because they might become active the next pass. So it won't save any RAM.

They have a short paragraph in the description. It has 80B total parameters, 3B active each pass. It achieves performance like a 30-60B model (10-20x, their claim). But is way more efficiant than that with only 3B active parameters.

[-] avidamoeba@lemmy.ca 3 points 1 week ago

Got. Thanks!

[-] zaidka@lemmy.ca 3 points 1 week ago

Looks like a solid model based on my limited testing. Though tool calls frequently fail with "JSON parse error" in longer sessions in OpenCode and llama.cpp. Hoping that will be addressed soon.

[-] robber@lemmy.ml 1 points 5 days ago* (last edited 5 days ago)

Yeah I enjoy it as well. Just in case you missed it - a fix was merged into llama.cpp two days ago which is said to improve quality.

Edit: I stand corrected - the fix for the issue you're experiencing has not yet been merged.

this post was submitted on 04 Feb 2026
23 points (100.0% liked)

LocalLLaMA

4403 readers
39 users here now

Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.

Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.

As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.

Rules:

Rule 1 - No harassment or personal character attacks of community members. I.E no namecalling, no generalizing entire groups of people that make up our community, no baseless personal insults.

Rule 2 - No comparing artificial intelligence/machine learning models to cryptocurrency. I.E no comparing the usefulness of models to that of NFTs, no comparing the resource usage required to train a model is anything close to maintaining a blockchain/ mining for crypto, no implying its just a fad/bubble that will leave people with nothing of value when it burst.

Rule 3 - No comparing artificial intelligence/machine learning to simple text prediction algorithms. I.E statements such as "llms are basically just simple text predictions like what your phone keyboard autocorrect uses, and they're still using the same algorithms since <over 10 years ago>.

Rule 4 - No implying that models are devoid of purpose or potential for enriching peoples lives.

founded 2 years ago
MODERATORS