206
submitted 11 months ago by flango@lemmy.eco.br to c/technology@lemmy.world

Amazing stuff.

top 50 comments
sorted by: hot top controversial new old
[-] MeanEYE@lemmy.world 118 points 11 months ago

Betteridge's law of headlines... "Any headline that ends in a question mark can be answered by the word no."

[-] ch00f@lemmy.world 77 points 11 months ago

I don’t get it. For the average consumer, EVs as they exist right now are fine. Charging is generally 20 mins every 2-3 hours and only on road trips. Charging an EV at home is a trivial technical challenge. I understand that there aren’t chargers on street corners, but vehicles are rarely parked more than 20 feet from some kind of electrical service.

The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly. Rolling out that kind of infrastructure is unnecessary, and hydrogen has already showed that it doesn’t work. We only did it with gasoline because there was no other way.

I can see liquid fuel being useful in certain applications, but for the typical consumer, BEVs are the way to go.

[-] surewhynotlem@lemmy.world 41 points 11 months ago

I can explain. You're thinking like a scientist, not a capitalist. Money will go into this tech because it forces you to be dependent on that charging system. They want that. It's better margins than electricity creation.

[-] just_another_person@lemmy.world 17 points 11 months ago

You are not completely incorrect here, but the capitalist side of this entire industry shifted to obtaining the rights to the raw resources a long time ago. There's a reason Tesla and Toyota have been snatching up mineral rights via acquisitions for years now. They want the entire supply chain, not just the proprietary means to deliver the product.

[-] ch00f@lemmy.world 9 points 11 months ago* (last edited 11 months ago)

But that’s the supply chain for the vehicles, not for the fuel. One of the best parts about BEVs is that if a new better technology is invented tomorrow, as long as it continues to use electrons being pushed around, all the infrastructure will continue to work. I don’t care what companies or governments try to do, I can still plug my car into the wall.

There’s money in hoarding the lithium, but not the kind of printer ink/razor blade money that you have with fuel sales.

[-] throwawayThePie@lemmynsfw.com 14 points 11 months ago* (last edited 11 months ago)

For the average consumer most EVs are too expensive. The batteries probably aren't going to get much cheaper due to the rarity and expense of lithium. Finding a better battery tech could make the whole idea of mass electric car ownership make sense. I do wish people would stop caring about the range issue so much tho. Just charge the battery every night and you'll almost never need more then 80 miles of range

I hope we drop the idea of mass car ownership tho. Effective mass public transit and micro mobility seems like a much safer and more efficient direction to go

Doubtful this will plan out tho. These articles are basically just corporate press releases. A couple of these battery techs might pan out and work at scale

[-] Tja@programming.dev 12 points 11 months ago

Any base on those claims that batteries aren't going to get cheaper? They have been for 15 years. There is still progress to be made. There are LFP that get rod of cobalt. There are sodium batteries in testing that will reduce lithium demand.

[-] TheGrandNagus@lemmy.world 3 points 11 months ago

Their claim about lithium being rare is nonsense as well. There's no lithium shortage, there's more a shortage of refineries and battery packaging plants (which means by building more, batteries will continue getting cheaper) and other rare earth metals, which is more of an issue, but like you say, the harder to source ones are being phased out of battery design.

load more comments (1 replies)
[-] frezik@midwest.social 3 points 11 months ago

Batteries almost certainly will get cheaper. Lithium isn't particularly rare. There are sources where it isn't economical to extract it currently. That's what "reserves" measure: a source that is economical to extract right now.

We tend to find new ways to extract minerals, which expands our reserves. Happens all the time, and lithium is no exception. The big one right now is the Salton Sea and seawater extraction in general.

There's also an interesting (string-based method)[https://engineering.princeton.edu/news/2023/09/07/revolutionizing-lithium-production-string] that could bring costs down and avoid the large pools of water that cause environmental damage and high water usage of current methods. It still needs to be proven at scale, however. I usually don't like to focus on any singular advancement; battery tech advances by trying 100 things, and 10 of them are practical at scale. This one does look promising, though.

load more comments (4 replies)
[-] chaogomu@kbin.social 13 points 11 months ago

The only place I see liquid fuel being used is in commercial transportation, particularly in shipping and rail. Anhydrous ammonia would be perfect for shipping, and a nightmare anywhere else. That shit will fucking kill you in an instant, and those who survive just wish they were dead.

So it should only be used in highly regulated professional settings.

That said, it's still a wonderful fuel option for those settings.

This electrolyte swaps shit? I see it as an attempt to reuse all that gas station infrastructure all over the place.

EV chargers are all over as well these days, but they're still not anything near as ubiquitous and gas stations.

[-] Garbanzo@lemmy.world 12 points 11 months ago

Owners of gas stations figured out a long time ago that attaching a convenience store to the business was a good idea, I think they'll adapt to people hanging out for twenty minutes pretty well.

load more comments (1 replies)
[-] SinningStromgald@lemmy.world 2 points 11 months ago

Gas stations around me are installing charging stations wherever they have room to do so. But I live in area with lots of baby boomers who have bought Teslas and Rivians. There is a group of 9 charging stations in the middle of strip mall parking lot a couple miles away as well.

[-] kameecoding@lemmy.world 12 points 11 months ago

It's because people have this mindset that they might need to travel 600+kms twice a year, therefore they need a 700km range BEV because Despite 99% of their car usage is sub 200km ( and 90% is sub 100) it is somehow prudent to carry all that extra battery material and weight around unused

I think hydrogen makes sense in a few applications namely trucking and long range cars for the few who need it, though I would say it's probably better to invest heavily in trains and handle most shipping with trains then put the stuff on trucks for the last 50kms and stuff

load more comments (2 replies)
[-] Addv4@kbin.social 9 points 11 months ago* (last edited 11 months ago)

Then what about trucking? Lithium is not nearly as energy dense, weighs a lot, and does take a significant longer time to charge than a diesel to refuel. If you don't believe me, look up the eCascadia by Frightliner. They are probably the current best option if you wanted a heavy electric truck, but they only get to around 200 miles with a load (for reference, a standard turbo diesel one would go around 600-800 miles and only take 30 min to refuel).

Currently in trucking, I've found that everyone kinda laughs at the idea of electrification (except on medium duty, that wouldn't be too hard, just overly expensive). Current electric motors are fine, it's just that the energy storage is nowhere near what is needed for actual use.

Yes, for most basic ev consumers current lithium is fine from a usability perspective, but from a cost one this might provide a much more useful alternative (assuming the cost isn't insane).

[-] ch00f@lemmy.world 4 points 11 months ago

I can see liquid fuel being useful in certain applications, but for the typical consumer, BEVs are the way to go.

[-] Garbanzo@lemmy.world 2 points 11 months ago

There's got to be a significant amount of trucking going on that's within a 100 mile radius, no? You'd have to charge more often than you'd have to refuel, but that seems like a problem worth offsetting to get the potential benefits of electrification.

[-] Addv4@kbin.social 2 points 11 months ago

That's more medium duty, and yeah, that probably could be converted to electric fairly easily (albeit at a higher cost). I was mostly thinking about longer distance travel, where the main goal is the most amount of uptime and you can't afford to park and charge for 3-4 hrs every 200 miles. And that is usually the most expensive model, with most getting less milage and/or taking longer to charge.

spoiler


load more comments (2 replies)
load more comments (1 replies)
[-] GreatAlbatross@feddit.uk 8 points 11 months ago* (last edited 11 months ago)

I just want a half decent second hand EV that will do 120 miles, for a reasonable price.

I can buy an acceptable ICE car for £5k, and it'll do that.
But at that price range, the only BEVs can get are shagged leafs that will do 50 miles on a good day.

The really annoying thing, is that 95% of my journeys are sub 50 miles. But I'm not willing to spend more than half the journey time charging midway through.

[-] themoken@startrek.website 3 points 11 months ago

I test drove a Leaf and honestly it felt bad brand new. I got range anxiety just taking it on the highway and back to the dealer.

So far, I think Tesla has a monopoly on practical EVs. Say what you will about the cars (or their leadership) but the charger network they built out and having ~150 miles of actual range is hard to beat in an existing product.

load more comments (1 replies)
[-] Tetsuo@jlai.lu 8 points 11 months ago

The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly.

I don't necessarily disagree with that but I hope you see that this type of infrastructure is exactly what we currently have and have proven to work.

It wouldn't be that stupid to reuse an existing infrastructure that is already built. The issue with our current fuel infrastructure is that it is moving fossil fuel.

load more comments (2 replies)
[-] phoneymouse@lemmy.world 5 points 11 months ago* (last edited 11 months ago)

Apparently, no one read the article. The primary application of this was for the military. The article is based on research done by DARPA. For military use, lithium ion batteries have way too short of a lifespan and the charge times are too long. Also, they can catch fire and burn for a long time, probably a real problem in a military context.

Flow batteries can mitigate all these issues and they’re cheaper and lighter. They can be made from inexpensive materials that are more readily available than lithium.

Given these benefits, it seems obvious that consumer applications will take off. The original researchers see an opportunity here and that’s why they formed a company.

Your cited lithium ion “20 min” charge time is for super chargers only, and in many cases is actually more like 40-45 minutes. Also, super charging is bad for the battery. In all other cases, you’ll be using an L1 or L2 charger which will take anywhere from 8 hours to 72 hours to charge a vehicle.

And, eventually, the lithium ion battery will lose its range as the battery degrades, making the whole car as disposable as that 3-4 year old smartphone you had to toss because the battery can’t hold a charge anymore. Flow batteries will keep refuel times to the same as they are today, and the material can be recharged up to 10,000 times, a huge improvement over lithium ion. And, the lifespan of your car won’t be literally glued and bolted to the lifespan of your battery.

load more comments (2 replies)
[-] supercriticalcheese@lemmy.world 5 points 11 months ago

Putting a charger on every street parking location will become disproportionately expensive.

load more comments (4 replies)
[-] mihies@kbin.social 4 points 11 months ago* (last edited 11 months ago)

It has many benefits. Many. At least if article is correct. Doesn't burn. It allows for energy storage which is huge when you take into the account renewable energy generation. It might even allow you to store surplus at home. It's less weight which results in less consumption.
Also what makes you say that hydrogen failed. AFAIK perhaps for cars is not viable right now, but for bigger vehicles it might be very convenient.
Edit: also doesn't require huge improvements of energy infrastructure.

[-] flango@lemmy.eco.br 4 points 11 months ago

It seems to me that we'll be living in a world with multiple solutions to the "fuel problem". In a city environment, maybe the lithium solution will be the best way to go, but we can't ignore that it isn't scalable for other uses. It's interesting to see how fossil fuels are powerful by the way they solve many problems at once; of course, after we built the insane infrastructure to support it.

We need every thing we got to beat climate change.

load more comments (1 replies)
[-] sartalon@lemmy.world 53 points 11 months ago

This article uses "nano" way too much for me to take it seriously. It is written like a marketing piece.

[-] bruhduh@lemmy.world 21 points 11 months ago
[-] 18107@aussie.zone 21 points 11 months ago

Flow batteries are great for long duration storage, but not good for high power delivery.

This means they will work far better as grid storage than as EV batteries.

load more comments (3 replies)
[-] bizzle@lemmy.world 9 points 11 months ago

Lithium batteries are an ecological nightmare and I can't wait for better technology

[-] Viper_NZ@lemmy.nz 4 points 11 months ago

What makes a lithium iron phosphate battery an ecological nightmare?

[-] bizzle@lemmy.world 5 points 11 months ago

If it still relies on mined lithium, it's some pretty bad stuff. Come to find out mining isn't super great for the environment.

[-] Viper_NZ@lemmy.nz 6 points 11 months ago

Much of the lithium is mined in Australia or via salt brines in Chile.

It’s not worse environmentally than the other mined materials that go into a vehicle.

[-] HerbalGamer@sh.itjust.works 3 points 11 months ago

That doesn't make it a good thing.

[-] Viper_NZ@lemmy.nz 17 points 11 months ago* (last edited 11 months ago)

Ok so let’s drill into it further.

Lithium gets mined once and then enters a circular system where batteries can be recycled after 10+ years in service.

It doesn’t exist in isolation either. While lithium is mined, its competitors (oil, coal, gas) are too with significantly higher environmental costs. They’re also not reusable.

Zinc Bromide flow batteries look like a great idea for static energy storage but if you’re worried about mining, I have bad news.

load more comments (4 replies)
load more comments (1 replies)
load more comments (8 replies)
[-] smuuthbrane@sh.itjust.works 8 points 11 months ago

I've always hoped so. Finally deal with both range anxiety and charging time together.

[-] andrewrgross@slrpnk.net 3 points 11 months ago

That'd be cool.

load more comments (7 replies)
[-] squid_slime@lemmy.world 3 points 11 months ago

make car battery big, use nano liquid, issue fixed?

[-] QuarterSwede@lemmy.world 2 points 11 months ago

That’s some crazy battery technology. This would greatly solve a lot of current issues.

load more comments
view more: next ›
this post was submitted on 24 Dec 2023
206 points (91.5% liked)

Technology

59648 readers
1478 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS