That could is doing a lot of heavy lifting in that headline.
Also, we can barely get OEMs to support phones for 5 years now...
That could is doing a lot of heavy lifting in that headline.
Also, we can barely get OEMs to support phones for 5 years now...
I'd say, 10 years is more than enough, the device is practically unusable after that, even if it's still working.
the device is practically unusable after that, even if it’s still working.
Not if you can change the battery...
I am having to retire my 7 year old S5, which still works perfectly, because 3G networks are being switched off in a couple of months.
The S5 is from 2014 which this year makes 10 years.
Pons_Aelius says: "the device is practically unusable after that, even if it's still working."
You say: "Not if you can change the battery"
AND THEN YOU GO ON to tell that your 10 year old phone is working but practically unusable, confirming in the most spectacular way, that Pons was right all along, even matching your very own experience to the point and date! And you still started your argument against it.
It's amazing really. Bravisimo.
Remember when light bulbs used to last decades? A phone battery that lasts that long is incompatible with capitalism.
When they were really dim and far too red like 80 years ago? Or when they switched to LED and actually lasted a decade, like now?
Batteries that last a decade will open up the opportunity for expensive tech like we never imagined.
The original Edison bulb still works iirc
The battery is not the main point of failure in contemporary phones, especially not one that makes you buy new unit. This new radioactive battery doesn't change much
Sensationalized clickbait.
100 microwatts, aiming for 1W in 2025. That's a big difference and 1W is still not enough for a cell phone. Phone-scale batteries aren't even on the roadmap.
1 Watt is plenty to power a phone on average. While idle a phone uses less than 1 Watt. The thing is, nuclear batteries are a misnomer, they're actual electrical generators. For this to work in a phone, you'd want to pair it with an actual battery, and the generator would charge the battery while the phone is idle and that would provide enough power on average for when you're actively using your phone.
1W is enough for a cell phone, if you combined it with a capacitor for brief bursts at higher watts.
Now play a game for an hour...
Not all phones need to play games and gaming phones don't need to use this type of technology. I would love a phone that I don't need to charge and most people could benefit from one. And for the select few that like to play intensive games on it then they can get ones that would need to be charged.
Though I doubt this technology will be the answer to that want though.
Yeah especially with just 0.001% of the estimated workload (~10W when gaming, but even when standby 0.5W, 100uW are still just 0.02% of that...). Needs a lot more research...
You throttle the cpu with long heavy workloads, just like phones already do due to the significant thermal constraints of the form factor.
My phone uses 0.6W when idle and 1.2-2.5W while I'm using it. Peaks are 8W+. No way an internal reactor only can power a phone.
Edit: 0.3W when screen is off.
A nuclear battery is not actually a battery, it's a generator. Trying to run something purely off a generator is stupidly inefficient because you'd need the output potential for the max load at all times even when on average the load is much lower. You absolutely want to pair a generator with a battery. Even power plants have batteries to store excess power.
If you think a little past the name misnomer it's obvious that this would work by pairing it with a smaller battery to handle spikes in usage. The end result is still the same though, you'd have a phone you'd never have to plug in.
You could do it with a parallelized output from a bunch of them.
Or with a diesel generator in a wheelbarrow
Looking forward to a mini reactor being directly next to my balls
"Just getting a little cancer, Stan."
BUFFALO SOLLDYA
It's not that radioactive and Nikel 63 decays to copper, so there is no radioactive waste being produced when the battery is depleted.
It's a variation of the same scam: https://youtu.be/5M5MF6KE-jY?si=7odXF_9q2SkumX7X
https://www.sec.gov/litigation/litreleases/lr-25829
Betavolt seems to be just using those flashy 3D renders of a battery that likely doesn't exist. It wouldn't surprise me if their datasheets mirror what was claimed by NDB.
Oh, good. So whenever some fool tosses a phone out of a car to get crushed on the roadway, shoots one because TikTok, or otherwise mangles a phone, we now have a potential for radioactive material to be spread around?
No, read the article. It's Nikel 63 and the decay is copper. It's contained in a metal seal.
I don't need 50 years but 50 days (before recharging) would be cool
Some of the first pacemakers used radioactive batteries. We left that concept pretty fast. And that is considering you have to cut your patient open to change a pacemaker battery. This will not happen in commercial cellphones
100 microwatts? What does a phone use, like 1W? So they are 4 orders of magnitude off? So phones need to become 10,000 times more efficient or the battery that much bigger?
Edit: Also what is the language of the article? "63 nuclear isotopes", it sounds like they mean "63 [different/individual atoms of] nuclear isotopes" but do they mean "nickel-63" by this? It is very confusing. Nickel-63 also has a half-life of 100 years, so if the battery is supped to last for 50 years, it has to be producing twice as much energy on day one that is discarded?
Betavolt is planning to boost its tech to produce a 1-watt battery by 2025. And while it still has some way to go, the company seems confident stating development is way ahead of European and American scientific research institutions and enterprises.
RemindMe! 1 year repeat
This is physically implausible. Also self proclaimed advances without 3rd party proof are less than worthless.
Yeah, I thought I was expressing my doubt with the "repeat" part of my Remindme joke, but I guess it wasn't appreciated.
Yeah, like to get four orders of magnitude more they must get some real problems. 1. They have to find some isotope that decays very differently, faster/higher energy decays, which should mean more dangerous materials and inconsistent output over time. 2. It might be true that their 100 microwatt battery is fairly resistant to impact and cannot be manipulated to produce some explosion. But if you have a battery with 10,000 times the energy, like the energy equivalent to several modern EV car batteries in your phone? I would really start to doubt it.
Fallout universe timeline, here we come!
50 Ci? That's a helluva lot of activity.
And that's for a battery that only produces 100 microwatts. A battery that produces 10000 times more power will be a lot spicier.
Perfect, my phone will outlast me
Depending on how radioactive the battery in your pocket is, that’s not hard.
These tech articles on some new advancement are basically the same phenomenon of bullshit as articles ending in a question mark. The answer is always "nah"
This is a most excellent place for technology news and articles.