233
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 26 Dec 2024
233 points (98.3% liked)
Asklemmy
44279 readers
596 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
Yes.
Sure. It'll take a very long while though. We can estimate roughly how long - encoded as ASCII and translated to hex your sentence looks like
54686520636174206973206261636b
. That's 30 hexadecimal digits. So very roughly, one of each16^30
30-digit sequences will match this one. So on average, you'd need to look about16^30 * 30 ≈ 4e37
digits into π to find a sequence matching this one. For comparison, something on the order of 1e15 digits of pi were ever calculated.Not very quickly, it's still
n log n
time. More importantly, information theory is ruthless: there exist no compression algorithms that have on average a >1 compression coefficient for arbitrary data. So if you tried to use π as compression, the offsets you get would on average be larger than the data you are compressing. For example, your data here can be written written as 30 hexadecimal digits, but the offset into pi would be on the order of 4e37, which takes ~90 hexadecimal digits to write down.