67
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 28 Jan 2025
67 points (95.9% liked)
technology
23495 readers
287 users here now
On the road to fully automated luxury gay space communism.
Spreading Linux propaganda since 2020
- Ways to run Microsoft/Adobe and more on Linux
- The Ultimate FOSS Guide For Android
- Great libre software on Windows
- Hey you, the lib still using Chrome. Read this post!
Rules:
- 1. Obviously abide by the sitewide code of conduct. Bigotry will be met with an immediate ban
- 2. This community is about technology. Offtopic is permitted as long as it is kept in the comment sections
- 3. Although this is not /c/libre, FOSS related posting is tolerated, and even welcome in the case of effort posts
- 4. We believe technology should be liberating. As such, avoid promoting proprietary and/or bourgeois technology
- 5. Explanatory posts to correct the potential mistakes a comrade made in a post of their own are allowed, as long as they remain respectful
- 6. No crypto (Bitcoin, NFT, etc.) speculation, unless it is purely informative and not too cringe
- 7. Absolutely no tech bro shit. If you have a good opinion of Silicon Valley billionaires please manifest yourself so we can ban you.
founded 4 years ago
MODERATORS
This is a quantization function. It's a fairly "math brained" name I agree, but the function is called
qX_K_q8_K
because it quantizes a value with a quantization index of X (unknown) to one with a quantization index of 8 (bits) which correlates to the memory usage. The0
vsK
portions are how it does rounding,0
means it does rounding by equal distribution (without offset), andK
means it creates a distribution that is more fine grained around more common values and is more rough around least common values. e.g. I have a data set that has a lot of values between 4 and 5 but not a lot of 10s. I have lets say 10 brackets between 4 and 5 but only 3 between 5 and 10.Basically it's a lossy compression for a data set into a specific enumeration (roughly correlates with size), so it's a way to given 1,000,000 numbers from 1-1000000, of putting their values into a range of numbers based on the q level How using different functions affects the output of models is more voodoo than anything else. You get better "quality" output from higher memory space, but quality is a complex metric and doesn't necessarily map to factual accuracy in the output, just statistical correlation with the model's data set.
An example of a common quantizer is an analog to digital converter. It must take continuous values from a wave that goes 0 to 1 and transform them into digital values of 0 and 1 with a specific sample rate.
Taking a 32 bit float and copying the value into 32 bit float is an identity quantizer.