view the rest of the comments
Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
Yes, if you think of the depicted spring with dead coils in the centre, as two springs of half length combined, they decrease the stiffness of the combined springs, as two springs in row have only half the stiffness.
My thought was starting from the opposite: A spring with the same number of coils, but equally spaced. At its ends, the axial force onto the spring is converted into internal torque. By Hooke's law, torque and shear strain (here change of twist angle with the coordinate running along the wire) are linked. This twist causes the coiled spring to contract.
However, in the spring with the "dead" coils, this motion is limited to the free coils, as the twist of the "dead" coils is inhibited by their contact. They behave like they were rigid. Thus, there only the wire of the free coils contributes to the (compressive) stiffness of the spring, which is less than the total amount of wire, yielding into a stiffer spring.