view the rest of the comments
LocalLLaMA
Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.
Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.
As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.
Rules:
Rule 1 - No harassment or personal character attacks of community members. I.E no namecalling, no generalizing entire groups of people that make up our community, no baseless personal insults.
Rule 2 - No comparing artificial intelligence/machine learning models to cryptocurrency. I.E no comparing the usefulness of models to that of NFTs, no comparing the resource usage required to train a model is anything close to maintaining a blockchain/ mining for crypto, no implying its just a fad/bubble that will leave people with nothing of value when it burst.
Rule 3 - No comparing artificial intelligence/machine learning to simple text prediction algorithms. I.E statements such as "llms are basically just simple text predictions like what your phone keyboard autocorrect uses, and they're still using the same algorithms since <over 10 years ago>.
Rule 4 - No implying that models are devoid of purpose or potential for enriching peoples lives.
Thanks that looks cool, I'll definitely try and report back. Do you happen to know what the hardware requirements are? I have access 64GB of RAM and 48GB of VRAM across 3 RTX2000e Ada GPUs.
Uh sorry, no. Since I don't use vllm, I don't know. It certainly depends on the method you choose. The activation-aware ones will use a lot of resources. Just truncating the numbers to 8bit (or whatever) uses very little resources, I did that on my laptop. Also depends on model architecture and the size of the model you feed in. Since you gave an 32b parameter model, I'd expect it to take about 64GB loaded fully into memory using 16bit floating point numbers. (32 ~~million~~ billion times 2 bytes.) But I don't really know whether quantization methods load the full thing, or if they do it in chunks. You'd have to google that or try it.
Alright thanks! I found it somewhat difficult to find information about the hardware requirements online, but yeah, maybe I just have to try it.
You're welcome. If you fail and you can't just add more RAM, maybe have a look at renting cloud servers. For example you can rent a computer on runpod.io for $2 an hour with double your specs. At least that's how I do one-off big compute tasks.