view the rest of the comments
Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
Great question. Since we evolved consuming “fresh”, non-salt, water our physiology revolves around certain set points for normal neurological, renal, and basic cellular function. Consuming salt water changes the osmolality of the blood, which then causes shifts of fluid to try and balance the change of osmolality which negatively effects neurological function since we evolved to function within a strict range of osmolality, sodium level, etc. The body manages this from the pituitary/ adrenal / and renal perspective to maintain neurological function. If you could create a situation where the normal isotonic function is reset to a more hypertonic environment then that would be the start. I’m only familiar with human physiology and pathology but perhaps someone who is familiar with fish physiology could comment on how fish stay “hydrated”.
Sea turtles have an organ that excretes the excess of salt near their eyes to deal with that.
https://oliveridleyproject.org/ufaqs/why-do-sea-turtles-cry
They cry because they remember