40
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 25 May 2024
40 points (91.7% liked)
Technology
59623 readers
2198 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
What's wrong with that? That's how basically any balcony solar system works.
The cables in your walls are designed for a certain maximum current before they start to heat up. This current is limited by your breaker.
Now if you introduce a plug in solar setup your current is limited by your maximum breaker capacity + whatever your solar setup can generate.
So if I'd use the specs from the article and apply it to a normal dutch home situation: 16A breaker, + 800W at 230V, which means ~3.5A = 19.5A max. which is probably still fine for short durations.
But now some genius doesn't read the fine print and hooks up 2 or 3 on the same circuit. There is no electrician that tells him that's dangerous because it's all self installed and he doesn't know any better. And all of a sudden you are up to 26.5A and you got glowing, smoking wires in your walls...
Also, emergency service hazard. The PV won't turn off if firefighters take out the mains, which makes a house potentially inaccessible during an emergency.
Surprisingly, no. Most inverters in the EU must come with island protection. Meaning that if there is no AC from the grid it immediatly switches off the inverter or the battery, there is no stand alone operation.
There are some systems that allow it but they are rare here and require the mains side to be fed trough the inverter itsself ensuring it's never back feeding into the grid when there is no power with the same island protection, or less commonly there is a transfer switch of some kind also eliminating the issue. And either should obviously have a main kill switch on the breaker board for emergencies that also switches off the in home power with 1 action.
But most importantly, either of those options is not plug and play and will require an electrician that hopefully does know what he's doing.
Does the island protection with if you have two inverters running independently? (legally or not)
Yep, I'm not exactly sure on the technical details but it works with multiple inverters. Otherwise having a street full with solar panels on every roof would still be a hazard if the power went out at a distribution junction for said street and repairs would have to be made.
If there is no powerplant feeding some energy, all inverters should shut off. Fixed installs and plug and play variants alike. I'm actually amazed that there are parts in the world where this isn't common.
Yes, because the frequency of the grid is also a trigger for shutting off the inverter. Inverters generate a frequency which indicates a "non healthy grid" that trigger the shutoff of connected inverters.