288
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 13 Jun 2024
288 points (100.0% liked)
Technology
37742 readers
494 users here now
A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
founded 2 years ago
MODERATORS
To note the obvious, an large language model is by definition at its core a mathematical formula and a massive collection of values from zero to one which when combined give a weighted average of the percentage that word B follows word A crossed with another weighted average word cloud given as the input ‘context’.
A nuron in machine learning terms is a matrix (ie table) of numbers between zero and 1 by contrast a single human nuron is a biomechanical machine with literally hundreds of trillions of moving parts that darfs any machine humanity has ever built in terms of complexity. This is just a single one of the 86 billion nurons in an average human brain.
LLM’s and organic brains are completely different and in both design, complexity, and function, and to treat them as closely related much less synonymous betrays a complete lack of understanding of how one or both of them fundamentally functions.
We do not teach a kindergartner how to write by having them read for thousands of years until they recognize the exact mathematical odds that string of letters B comes after string A, and is followed by string C x percent of the time. Indeed humans don’t naturally compose sentences one word at a time starting from the beginning, instead staring with the key concepts they wish to express and then filling in the phrasing and grammar.
We also would not expect that increasing from hundreds of years of reading text to thousands would improve things, and the fact that this is the primary way we’ve seen progress in LLMs in the last half decade is yet another example of why animal learning and a word cloud are very different things.
For us a word actually correlates to a concept of what that word represents. They might make mistakes and missunderstand what concept a given word maps to in a given language, but we do generally expect it to correlate to something. To us a chair is a object made to sit down on, and not just the string of letters that comes after the word the in .0021798 percent of cases weighted against the .0092814 percent of cases related to the collection of strings that are being used as the ‘context’.
Do I believe there is something intrinsically impossible for a mathematical program to replicate about human thought, probably not. But this this not that, and is nowhere close to that on a fundamental level. It’s comparing apples to airplanes and saying that soon this apple will inevitably take anyone it touches to Paris because their both objects you can touch.
None of these appeals to relative complexity, low level structure, or training corpuses relates to whether a human or NN "know" the meaning of a word in some special way. A lot of your description of what "know" means could be confused to be a description of how Word2Vec encodes words. This just indicates ignorance of how ML language processing works. It's not remotely on the same level as a human brain, but your view on how things work and what its failings are is just wrong.