That's an interesting point. It also implies much better efficiency at low speeds than most motors.
Given a few generations of better semiconductor, it could end up being very interesting for (railway mostly?) traction motors.
Low speed high torque means you don't need a further reduction gearbox.
Good performance near zero speeds mean you might not need to use braking at all aside from parking and emergencies.
High voltages are already widely used and available - 1500VDC nominal is an older standard for metro trains; 3kVDC is common both for older overhead and as an intermediate DC bus voltage for AC overhead. Future semiconductor generations could allow direct use of 25kV overhead (~40kVDC rectified at maximum line level) without the need for an intermediate bus, assuming the dielectric fluid was good enough.
That's an interesting point. It also implies much better efficiency at low speeds than most motors.
Given a few generations of better semiconductor, it could end up being very interesting for (railway mostly?) traction motors.
Low speed high torque means you don't need a further reduction gearbox.
Good performance near zero speeds mean you might not need to use braking at all aside from parking and emergencies.
High voltages are already widely used and available - 1500VDC nominal is an older standard for metro trains; 3kVDC is common both for older overhead and as an intermediate DC bus voltage for AC overhead. Future semiconductor generations could allow direct use of 25kV overhead (~40kVDC rectified at maximum line level) without the need for an intermediate bus, assuming the dielectric fluid was good enough.