view the rest of the comments
Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
Inside a sphere of constant density, gravity is linearly related to distance from the center.
So for example the Earth has a radius of ~4000 miles. Assuming it has constant density, a 200 pound man would be weightless at its center, weigh 0.2 pounds at 4 miles from the center, weigh 2 pounds at 40 miles from the center, weigh 100 pounds at halfway to the surface, and so on.
So for the Sun, taking its density/pressure into account, will the same gravity gradient exist but on a much larger scale?
Thank you
A linear relationship would exist if the sun were uniform in density, but it isn't.
Though there is still a nonlinear change in gravity as you approach the center of the sun.
So the larger the star, given that most (or all) aren't uniform, there will come a gradient of gravity at its center that one can't even call it low gravity - it's heavy material is simply churning too much for their to be a stable center of gravity?
I think the best way to visualize it is that when you are inside a star, you are effectively "standing" on a smaller star. Everything behind you can theoretically be ignored. When you are very close to the center, you are standing on a very tiny star.
So instead of the hole density from one side to the other, I only have the density from the center to its surface, am I understanding that correctly?
I'm not sure what you mean by "surface".
Imagine you are standing on the surface of Earth, and you weighed 200 pounds.
Now imagine Earth were magically transported to the center of the sun, completely replacing an equal volume of solar core. Inside the very middle of the sun, standing on planet earth, you would still weigh 200 pounds. The gravity of all the solar mass surrounding the Earth would cancel out.
If you traveled upwards, to the surface of the sun, your weight would increase. At the sun's surface, you would weigh 5400 pounds.