view the rest of the comments
Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
6) No US Politics.
Please don't post about current US Politics. If you need to do this, try !politicaldiscussion@lemmy.world or !askusa@discuss.online
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
It's also false. Take any pair of points on the graph of sin(1/x) using the domain (0,1] that you just gave. Then we can write these points in the form (a,sin(1/a)), (b,sin(1/b)) such that 0 < a < b without loss of generality. The map f(t)=(t,sin(1/t)) on [a,b] is a path connecting these two points. This shows the graph of sin(1/x) on (0,1] is path connected.
This same trick will work if you apply it to the graph of ANY continuous map from a connected subset of R into R. This is what my graph example was getting at.
The "topologists sine curve" example you see in pointset topology as an example of connected but not path connected space involves taking the graph you just gave and including points from its closure as well.
Think about the closure of your sin(1/x) graph here. As you travel towards the origin along the topologists sine curve graph you get arbitrarily close to each point along the y-axis between -1 and 1 infinitely often. Why? Take a horizontal line thru any such point and look at the intersections between your horizontal line and your y=sin(1/x) curve. You can make a limit point argument from this fact that the closure of sin(1/x)'s graph is the graph of sin(1/x) unioned with the portion of the y-axis from -1 to 1 (inclusive).
Path connectedness fails because there is no path from any one of the closure points you just added to the rest of the curve (for example between the origin and the far right endpoint of the curve).
A better explanation of the details here would be in the connectedness/compactness chapter in Munkres Topology textbook it is example 7 in ch 3 sec 24 pg 157 in my copy.
This is fine. I stated boundedness as an additional assumption one might require for pragmatic reasons. It's not mandatory. But it's easy to imagine somebody trying to be clever and pointing out that if we allow the domain or range to be unbounded we still have problems. For example you literally cannot draw the identity function in full. The identity map extends infinitely along y=x in both directions. You don't have the paper, drawing utensils or lifespan required to actually draw this.
Yes, you are right, topologists' sine curve includes the origin point, which is connected but not path connected. I guess I didn't do very well in my point-set topology. I will change that in my answer :)