420
submitted 1 year ago by Toes@ani.social to c/196@lemmy.blahaj.zone
you are viewing a single comment's thread
view the rest of the comments
[-] Pipoca@lemmy.world 2 points 1 year ago* (last edited 1 year ago)

That's not really true.

You'll regularly see textbooks where 3x/2y is written to mean 3x/(2y) rather than (3x/2)*y because they don't want to format

3x
----
2y

properly because that's a terrible waste of space in many contexts.

[-] unoriginalsin@lemmy.world 1 points 1 year ago

You'll regularly see textbooks

That's what I said.

[-] Pipoca@lemmy.world 1 points 1 year ago

You generally don't see algebra in grade school textbooks, though.

[-] unoriginalsin@lemmy.world 1 points 1 year ago

12 is a grade. I took algebra in the 7th grade.

[-] Pipoca@lemmy.world 1 points 1 year ago* (last edited 1 year ago)

Grade school is a US synonym for primary or elementary school; it doesn't seem to be used as a term in England or Australia. Apparently, they're often K-6 or K-8; my elementary school was K-4; some places have a middle school or junior high between grade school and high school.

[-] unoriginalsin@lemmy.world 1 points 1 year ago

I don't know why you're getting lost on the pedantry of defining "grade school", when I was clearly discussing the fact that you only see this kind of sloppy formula construction in arithmetic textbooks where students are learning the basics of how to perform the calculations. Once you get into applied mathematics and specialized fields that use actual mathematics, like engineering, chemistry and physics, you stop seeing this style of formula construction because the ambiguity of the terms leads directly to errors of interpretation.

[-] Pipoca@lemmy.world 1 points 1 year ago

Sure, the definition of grade school doesn't really matter too much. Because college texts are written in ways that violate pemdas.

Look, for example, at https://www.feynmanlectures.caltech.edu/I_45.html

For example, if f(x,y)=x2+yx, then (∂f/∂x)y=2x+y, and (∂f/∂y)x=x. We can extend this idea to higher derivatives: ∂^2f/∂y^2 or ∂^2f/∂y∂x. The latter symbol indicates that we first differentiate f with respect to x, treating y as a constant, then differentiate the result with respect to y, treating x as a constant. The actual order of differentiation is immaterial: ∂2f/∂x∂y=∂2f/∂y∂x.

Notice: ∂^2f/∂y∂x is clearly written to mean ∂^2f/(∂y∂x).

[-] unoriginalsin@lemmy.world 1 points 1 year ago* (last edited 1 year ago)

What an interesting error to point out in support of pemdas.

Clearly the formatting of a paragraph of text in a textbook full of clearly and unambiguously written formulas discussing the very order of operations itself compared to the formatting of an actual formula diagram is going to be less clear. But here you've chosen to point to a discussion of why the order is irrelevant in the case under question.

Your example is the conclusion of a review of mathematics.

First we shall review some mathematics.

...

The actual order of differentiation is immaterial:

The fact that the example formula is written sloppy is irrelevant, because at no point is this going to be an actual formula meant to be solved, it's merely an illustration of why, in this case, the order of a particular operation is "immaterial".

Even if ∂^2f/∂y∂x is clearly written to mean ∂^2f/(∂y∂x), it doesn't matter because "∂2f/∂x∂y=∂2f/∂y∂x". So long as you're consistently applying pemdas, you're going to get the same answer whether you derive x first or y.

However, when it's time to discuss the actual formulas and equations being taught in the example text, clearly and unambiguously written formulas are illustrated as though copied from Ann illustration on a whiteboard instead of inserted into paragraphs that might have simply been transcribed from a lecture. Which, somewhat coincidentally, is exactly what your citation is.

[-] Pipoca@lemmy.world 1 points 1 year ago

Under PEMDAS, ∂2f/∂x∂y = (∂2f/∂x) * ∂y = ∂2∂y/∂x

this post was submitted on 03 Dec 2023
420 points (100.0% liked)

196

16809 readers
1226 users here now

Be sure to follow the rule before you head out.

Rule: You must post before you leave.

^other^ ^rules^

founded 2 years ago
MODERATORS