858
6÷2(1+2) (programming.dev)
submitted 11 months ago* (last edited 11 months ago) by wischi@programming.dev to c/memes@lemmy.ml

https://zeta.one/viral-math/

I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.

It's about a 30min read so thank you in advance if you really take the time to read it, but I think it's worth it if you joined such discussions in the past, but I'm probably biased because I wrote it :)

you are viewing a single comment's thread
view the rest of the comments
[-] SmartmanApps@programming.dev 0 points 9 months ago

Starting a new comment thread (I gave up on reading all of them). I'm a high school Maths teacher/tutor. You can read my Mastodon thread about it at Order of operations thread index (I'm giving you the link to the thread index so you can just jump around whichever parts you want to read without having to read the whole thing). Includes Maths textbooks, historical references, proofs, memes, the works.

And for all the people quoting university people, this topic (order of operations) is not taught at university - it is taught in high school. Why would you listen to someone who doesn't teach the topic? (have you not wondered why they never quote Maths textbooks?)

#DontForgetDistribution #MathsIsNeverAmbiguous

[-] cypherpunks@lemmy.ml 1 points 9 months ago* (last edited 9 months ago)

I'm curious if you actually read the whole (admittedly long) page linked in this post, or did you stop after realizing that it was saying something you found disagreeable?

I’m a high school Maths teacher/tutor

What will you tell your students if they show you two different models of calculator, from the same company, where the same sequence of buttons on each produces a different result than on the other, and the user manuals for each explain clearly why they're doing what they are? "One of these calculators is just objectively wrong, trust me on this, #MathsIsNeverAmbiguous" ?

The truth is that there are many different math notations which often do lead to ambiguities.

In the case of the notation you're dismissing in your (hilarious!) meme here, well, outside of anglophone high schools, people don't often encounter the obelus notation for division at all except for as a button on calculators. And there its meaning is ambiguous (as clearly explained in OP's link).

Check out some of the other things which the "÷" symbol can mean in math!

#MathNotationsAreOftenAmbiguous

[-] SmartmanApps@programming.dev 0 points 9 months ago

did you stop after realizing that it was saying something you found disagreeable

I stopped when he said it was ambiguous (it's not, as per the rules of Maths), then scanned the rest to see if there were any Maths textbook references, and there wasn't (as expected). Just another wrong blog.

What will you tell your students if they show you two different models of calculator, from the same company

Has literally never happened. Texas Instruments is the only brand who continues to do it wrong (and it's right there in their manual why) - all the other brands who were doing it wrong have reverted back to doing it correctly (there's a Youtube video about this somewhere). I have a Sharp calculator (who have literally always done it correctly) and most of my students have Casio, so it's never been an issue.

trust me on this

I don't ask them to trust me - I'm a Maths teacher, I teach them the rules of Maths. From there they can see for themselves which calculators are wrong and why. Our job as teachers is for our students to eventually not need us anymore and work things out for themselves.

The truth is that there are many different math notations which often do lead to ambiguities

Not within any region there isn't. e.g. European countries who use a comma instead of a decimal point. If you're in one of those countries it's a comma, if you're not then it's a decimal point.

people don’t often encounter the obelus notation for division at all

In Australia it's the only thing we ever use, and from what I've seen also the U.K. (every U.K. textbook I've seen uses it).

Check out some of the other things which the “÷” symbol can mean in math!

Go back and read it again and you'll see all of those examples are worded in the past tense, except for ISO, and all ISO has said is "don't use it", for reasons which haven't been specified, and in any case everyone in a Maths-related position is clearly ignoring them anyway (as you would. I've seen them over-reach in Computer Science as well, where they also get ignored by people in the industry).

[-] cypherpunks@lemmy.ml 1 points 9 months ago* (last edited 9 months ago)

Has literally never happened. Texas Instruments is the only brand who continues to do it wrong [...] all the other brands who were doing it wrong have reverted

Ok so you're saying it never happened, but then in the very next sentence you acknowledge that you know it is happening with TI today, and then also admit you know that it did happen with some other brands in the past?

But, if you had read the linked post before writing numerous comments about it, you'd see that it documents that the ambiguity actually exists among both old and currently shipping models from TI, HP, Casio, and Canon, today, and that both behaviors are intentional and documented.

There is no bug; none of these calculators is "wrong".

The truth is that there are many different math notations which often do lead to ambiguities

Not within any region there isn’t.

Ok, this is the funniest thing I've read so far today, but if this is what you are teaching high school students it is also rather sad because you are doing them a disservice by teaching them that there is no ambiguity where there actually is.

If OP's blog post is too long for you (it is quite long) i recommend reading this one instead: The PEMDAS Paradox.

In Australia it’s the only thing we ever use, and from what I’ve seen also the U.K. (every U.K. textbook I’ve seen uses it).

By "we" do you mean high school teachers, or Australian society beyond high school? Because, I'm pretty sure the latter isn't true, and I'm skeptical of the former. I thought generally the ÷ symbol mostly stops being used (except as a calculator button) even before high school, basically as soon as fractions are taught. Do you have textbooks where the fraction bar is used concurrently with the obelus (÷) division symbol?

[-] PipedLinkBot@feddit.rocks 1 points 9 months ago

Here is an alternative Piped link(s):

never happened

Piped is a privacy-respecting open-source alternative frontend to YouTube.

I'm open-source; check me out at GitHub.

[-] SmartmanApps@programming.dev 0 points 9 months ago* (last edited 9 months ago)

Ok so you’re saying it never happened, but then in the very next sentence you acknowledge that you know it is happening with TI today

You asked me what I do if my students show me 2 different answers what do I tell them, and I told you that has never happened. None of my students have ever had one of the calculators which does it wrong.

that both behaviors are intentional and documented

Correct. I already noted earlier (maybe with someone else) that the TI calculator manual says that they obey the Primary School order of operations, which doesn't work with High School order of operations. i.e. when the brackets have a coefficient. The TI calculator will give a correct answer for 6/(1+2) and 6/2x(1+2), but gives a wrong answer for 6/2(1+2), and it's in their manual why. I saw one Youtuber who was showing the manual scroll right past it! It was right there on screen why it does it wrong and she just scrolled down from there without even looking at it!

none of these calculators is “wrong”.

Any calculator which fails to obey The Distributive Law is wrong. It is disobeying a rule of Maths.

there is no ambiguity where there actually is.

There actually isn't. We use decimal points (not commas like some European countries), the obelus (not colon like some European countries), etc., so no, there is never any ambiguity. And the expression in question here follows those same notations (it has an obelus, not a colon), so still no ambiguity.

i recommend reading this one instead: The PEMDAS Paradox

Yes, I've read that one before. Makes the exact same mistakes. Claims it's ambiguous while at the same time completely ignoring The Distributive Law and Terms. I'll even point out a specific thing (of many) where they miss the point...

So the disagreement distills down to this: Does it feel like a(b) should always be interchangeable with axb? Or does it feel like a(b) should always be interchangeable with (ab)? You can't say both.

ab=(axb) by definition. It's in Cajori, it's in today's Maths textbooks. So a(b) isn't interchangeable with axb, it's only interchangeable with (axb) (or (ab) or ab). That's one of the most common mistakes I see. You can't remove brackets if there's still more than 1 term left inside, but many people do and end up with a wrong answer.

By “we” do you mean high school teachers, or Australian society beyond high school?

I said "In Australia" (not in Australian high school), so I mean all of Australia.

Because, I’m pretty sure the latter isn’t true

Definitely is. I have never seen anyone here ever use a colon to mean divide. It's only ever used for a ratio.

Do you have textbooks where the fraction bar is used concurrently with the obelus (÷) division symbol?

All my textbooks use both. Did you read my thread? If you use a fraction bar then that is a single term. If you use an obelus (or colon if you're in a country which uses colon for division) then that is 2 terms. I covered all of that in my thread.

EDITED TO ADD: If you don't use both then how do you write to divide by a fraction?

this post was submitted on 12 Dec 2023
858 points (96.4% liked)

Memes

45746 readers
1556 users here now

Rules:

  1. Be civil and nice.
  2. Try not to excessively repost, as a rule of thumb, wait at least 2 months to do it if you have to.

founded 5 years ago
MODERATORS