118
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 26 Mar 2024
118 points (87.8% liked)
Asklemmy
43890 readers
812 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
Disclaimer: not a physicist, and I never went beyond the equivalent to a BA in physics in my formal education (after that I "fell" into comp sci, which funnily enough I find was a great pepper for wrapping my head around quantum mechanics).
So space and time per se might be continuous, but the energy levels of the various fields that inhabit spacetime are not.
And since, to the best of our current understanding, everything "inside" the universe is made up of those different fields, including our eyes and any instrument we might use to measure, there is a limit below which we just can't "see" more detail - be it in terms of size, mass, energy, spin, electrical potential, etc.
This limit varies depending on the physical quantity you are considering, and are collectively called Planck units.
Note that this is a hand wavy explanation I'm giving that attempts to give you a feeling for what the implications of quantum mechanics are like. The wikipédia article I linked in the previous paragraph gives a more precise definition, notably that the Planck "scale" for a physical quantity (mass, length, charge, etc) is the scale at which you cannot reasonably ignore the effects of quantum gravity. Sadly (for the purpose of providing you with a good explanation) we still don't know exactly how to take quantum gravity into account. So the Planck scale is effectively the "minimum size limit" beyond which you kinda have to throw your existing understanding of physics out of the window.
This is why I began this comment with "space and time might be continuous per se"; we just don't conclusively know yet what "really" goes on as you keep on considering smaller and smaller subdivisions.