781
teachings (mander.xyz)
you are viewing a single comment's thread
view the rest of the comments
[-] bleistift2@feddit.de -2 points 6 months ago* (last edited 6 months ago)

This only ever got handed down to us as gospel. Is there a compelling reason why we should accept that (-3) × (-3) = 9?

[-] notabot@lemm.ee 31 points 6 months ago

You can look at multiplication as a shorthand for repeated addition, so, for example:

3x3=0 + 3 + 3 + 3 = 9

In other words we have three lots of three. The zero will be handy later...

Next consider:

-3x3 = 0 + -3 + -3 + -3 = -9

Here we have three lots of minus three. So what happens if we instead have minus three lots of three? Instead of adding the threes, we subtract them:

3x-3 = 0 - 3 - 3 - 3 = -9

Finally, what if we want minus three lots of minus three? Subtracting a negative number is the equivalent of adding the positive value:

-3x-3 = 0 - -3 - -3 - -3 = 0 + 3 + 3 + 3 = 9

Do let me know if some of that isn't clear.

[-] bleistift2@feddit.de 13 points 6 months ago* (last edited 6 months ago)

This was very clear. Now that I see it, I realize it’s the same reasoning why x^(-3) is 1/(x^3):

 2 × -3 = -6
 1 × -3 = -3
 0 × -3 =  0
-1 × -3 =  3

Thank you!

[-] affiliate@lemmy.world 4 points 6 months ago

i think this is a really clean explanation of why (-3) * (-3) should equal 9. i wanted to point out that with a little more work, it's possible to see why (-3) * (-3) must equal 9. and this is basically a consequence of the distributive law:

0  = 0 * (-3)
   = (3 + -3) * (-3)
   = 3 * (-3) + (-3) * (-3)
   = -9 + (-3) * (-3).

the first equality uses 0 * anything = 0. the second equality uses (3 + -3) = 0. the third equality uses the distribute law, and the fourth equality uses 3 * (-3) = -9, which was shown in the previous comment.

so, by adding 9 to both sides, we get:

9 = 9 - 9 + (-3) * (-3).

in other words, 9 = (-3) * (-3). this basically says that if we want the distribute law to be true, then we need to have (-3) * (-3) = 9.

it's also worth mentioning that this is a specific instance of a proof that shows (-a) * (-b) = a * b is true for arbitrary rings. (a ring is basically a fancy name for a structure with addition and distribute multiplication.) so, any time you want to have any kind of multiplication that satisfies the distribute law, you need (-a) * (-b) = a * b.

in particular, (-A) * (-B) = A * B is also true when A and B are matrices. and you can prove this using the same argument that was used above.

[-] Davel23@fedia.io 5 points 6 months ago

Same reason that a double negative makes a positive.

[-] ImplyingImplications@lemmy.ca 5 points 6 months ago* (last edited 6 months ago)

Here's another example:

A) -3 × (-3 + 3) = ?

You can solve this by figuring out the brackets first. -3 × 0 = 0

You can also solve this using the distributive property of multiplication, rewriting the equation as

A) -3 × (-3 + 3) = 0
(-3 × -3) + (-3 × 3) = 0
(-3 × -3) - 9 = 0
(-3 × -3) = 9

If (-3 × -3) didn't equal 9 then you'd get different answers to equation A depending on what method you used to solve it.

this post was submitted on 17 Apr 2024
781 points (98.0% liked)

Science Memes

10940 readers
1955 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS